UTILITY FLIGHT MANUAL

X-I5-2/3 ADD-ON ROCKET AIRCRAFT FOR FLIGHT SIMULATOR

Serial numbers: AF56-6671 & AF56-6672 (XLR-99 engine)

ENGLISH VERSION 1.0

Desktop commanders are responsible for bringing this publication to the attention of all flight simulator enthusiasts and X-15 fans cleared for operation of subject addon rocket aircraft.

U.S. AR FORCE

51000

ayan

Contains full product description and specifications, installation instructions, normal procedures and check list.

www.xtremeprototypes.com

X-I5 FOR FLIGHT SIMULATOR SERIES

TABLE OF CONTENTS

FOREWORD

Section	1	INTRODUCTION AND PRODUCT DESCRIPTION	1-1
Section	11	SOFTWARE INSTALLATION	2-1
Section	III	AIRCRAFT DESCRIPTION AND SPECIFICATIONS	3-1
Section	IV	INSTRUMENT PANELS	4-1
Section	V	NORMAL PROCEDURES AND CHECK LIST	5-1
Section	VI	CONDENSED PROCEDURES AND CHECK LIST	6-1

4

APPENDICES

Appendix 1:	QUICK-START PROCEDURES	A-1
Appendix 2:	INSTRUMENT READINGS	A-2
Appendix 3:	FS AIRCRAFT REFERENCE INFORMATION	A-3
Appendix 4:	PRODUCT SPECIFICATIONS	A-4
Appendix 5:	SELECTED INTERNET LINKS	A-5
Appendix 6:	SELECTED BIBLIOGRAPHY	A-6
Appendix 7:	OTHER X-15 FOR FLIGHT SIMULATOR PRODUCTS by Xtreme Prototypes	A-7

- 1. MOVABLE HORIZONTAL STABILIZER
- BALLISTIC CONTROL SYSTEM ROCKETS (2, ON BOTH WINGS) UPPER SPEED BRAKE 2.
- 3.
- MOVABLE UPPER VERTICAL STABILIZER 4.
- 5. LIQUID OXYGEN TANK (FROST)
- 6. APU EXHAUST (2, LEFT AND RIGHT)
- 7. EQUIPMENT COMPARTMENT
- 8. CANOPY
- 9. PITOT HEAD 10. BALLISTIC CONTROL SYSTEM ROCKETS (8)
- 11. NACA/NORTRONICS BALL NOSE
- 12. WING-TIP POD (2, LEFT AND RIGHT)
- 13. TOP BUG-EYE CAMERA PORT

- 14. REAR LANDING GEAR SKID (2, ON BOTH
- SIDES) 15. LOWER SPEED BRAKE
- 16. LOWER FIXED VERTICAL STABILIZER
- (MOVABLE VENTRAL REMOVED)
- 17. WING (2, LEFT AND RIGHT)
- 18. SIDE FAIRING (2, LEFT AND RIGHT)
- **19. LOWER UHF ANTENNAS**
- 20. EXTERNAL CANOPY EMERGENCY JETTISON
- HANDLE ACCESS DOOR 21. NOSE LANDING GEAR DOOR
- 22. NOSE LANDING GEAR
- 23. VENTRAL BUG-EYE CAMERA PORT (2, ON BOTH SIDES)
- 24. ENGINE TURBOPUMP EXHAUST 25. RESEARCH INSTRUMENTS 26. TAIL-CONE BOX 27. EJECTION SEAT

- 28. PILOT (FULL PRESSURE SUIT)
- **29. INSTRUMENT PANEL**
- **30. LIQUID OXYGEN JETTISON PORT**
- 31. XLR-99 ROCKET ENGINE
- 32. AMMONIA JETTISON PORT
- 33. HYDROGEN PEROXIDE JETTISON PORT 34. FLAP (2, LEFT AND RIGHT) 35. COCKPIT CAMERA

- 36. COCKPIT LIGHT
- **37. ENGINE TIMER (STOPWATCH)**

Xtreme Prototypes X-15-2/3 for Flight Simulator Version 1.0 – Utility Flight Manual 3-5

WITH INERTIAL ALL-ATTITUDE FLIGHT DATA SYSTEM AND XLR-99 ENGINE (X-15-2g)

3 2 1 87 81 86 85 82 78 76 80 72 10 77 79 75 74 73 33 71 70 69 68 67 66 65 64 63 62 61 60 59 58 57 56

- AMMONIA JETTISON STOP SWITCH 1.
- 2.
- H₂O₂ JETTISON STOP SWITCH LIQUID OXYGEN JETTISON STOP SWITCH 3.
- H₂O₂ SOURCE AND PURGE PRESSURE GAUGE 4.
- DISPLAY/HIDE LEFT SIDE PANEL ICON 5.
- PROPELLANT TANK PRESSURE GAUGE 6.
- **AUXILIARY LAUNCH SWITCH*** 7.
- SIDE-SLIP INDICATOR 8.
- LANDING GEAR HANDLE 9.
- 10.
- HELIUM RELEASE SELECTOR SWITCH
- 11. VENTRAL JETTISON BUTTON 12. PROPELLANT SOURCE PRESSURE GAUGE
- 13. FIRE-WARNING LIGHT
- AMMONIA TANK PRESSURE-LOW CAUTION 14. LIGHT
- ENGINE VIB MALFUNCTION CAUTION LIGHT 15.
- 16. **PROPELLANT EMERGENCY PRESS. SWITCH**
- 17. TURBOPUMP OVERSPEED CAUTION LIGHT
- LIQUID OXYGEN PRESSURE-LOW CAUTION 18.
- LIGHT **STAGE 2 IGNITION MALFUNCTION CAUTION** 19. LIGHT
- 20. VALVE MALFUNCTION CAUTION LIGHT
- 21. IDLE-END CAUTION LIGHT
- 22. NO-DROP OR 23-SECOND CAUTION LIGHT
- **IGNITION-READY LIGHT** 23.
- 24. DISPLAY/HIDE LEFT WHITE CONSOLE ICON 25. DISPLAY/HIDE THROTTLE AND SPEED BRAKE PANEL ICON
- ALTIMETER 26.
- AIRSPEED/MACH INDICATOR 27.
- PILOT'S OXYGEN-LOW CAUTION LIGHT 28.
- FUEL QUANTITY GAUGE 29.

- Figure 4-1
- **30. ACCELEROMETER**
- ANGLE-OF-ATTACK INDICATOR 31.
- 32.
- AZIMUTH/ADF INDICATOR 33.
- ENGINE TIMER (STOPWATCH) 34.
- NO. 1 APU SWITCH 35.
- PITCH ANGLE SET CONTROL 36.
- INERTIAL SPEED (VELOCITY) INDICATOR 37.
- INERTIAL HEIGH (ALTIMETER) INDICATOR 38.
- NO.1 APU H2O2 COMPARTMENT OVERHEAT 39.
- WARNING LIGHT NO. 1 APU COMPARTMENT OVERHEAT CAU-40. TION LIGHT
- NO.1 GENERATOR-OUT LIGHT 41.
- DISPLAY/HIDE ICONS: COMPASS, MAP 42.
- NO. 1 GENERATOR AC VOLTMETER 43.
- 44. MACHMETER
- 45. **NO.1 GENERATOR SWITCH**
- 46.
- NO. 2 GENERATOR SWITCH EMERGENCY BATTERY SWITCH NO. 2 GENERATOR-OUT LIGHT 47.
- 48.
- HYDROGEN PEROXIDE TRANSFER SWITCH 49.
- **NO.2 GENERATOR AC VOLTMETER** 50.
- NO. 2 APU H₂O₂ COMPARTMENT OVERHEAT 51. WARNING LIGHT
- 52. NO. 2 APU COMPARTMENT CAUTION LIGHT
- NO. 2 APU H₂O₂-LOW CAUTION LIGHT 53.
- NO.2 APU SWITCH 54.
- CANOPY INT. EMERGENCY JETTISON HANDLE DISPLAY/HIDE RIGHT PANEL ICON 55.
- 56.
- STABLE PLATFORM SWITCH 57.
- NO. 2 HYDRAULIC TEMPERATURE GAUGE 58. 59.
 - CABIN PRESSURE ALTIMETER

- 60. HYDRAULIC PRESSURE GAUGE
- 61. CABIN HELIUM SOURCE PRESSURE GAUGE
- 62. NO. 2 BALLISTIC CONTROL SWITCH
- 63. APU BEARING TEMPERATURE GAUGE
- 64. APU H2O2 TANK PRESSURE GAUGE
- 65. NO. 1 BALLISTIC CONTROL SWITCH
- MIXING CHAMBER TEMPERATURE GAUGE 66.
- APU SOURCE PRESSURE GAUGE 67.
- NO.1 APU H₂O₂-LOW CAUTION LIGHT 68.
- 69. NO.1 HYDRAULIC TEMPERATURE GAUGE

MAIN PANEL

- 71. DISPLAY/HIDE CENTRAL PEDESTAL ICON LIQUID OXYGEN BEARING TEMPERATURE 72.
- GAUGE
- 73. RATE-OF-ROLL INDICATOR
- **IGNITER IDLE SWITCH** 74.
- 75 H₂O₂ COMPARTMENT-HOT CAUTION LIGHT
- 76. CHAMBER & STAGE 2 IGNITER PRESS. GAUGE
- 77.
- TURBOPUMP IDLE BUTTON ENGINE PRIME SWITCH DISPLAY/HIDE GPS ICON 78.
- 79.
- DISPLAY/HIDE ICONS: RADIO/ADF PANEL, 80. ATC WINDOW
- 81. **ENGINE PRECOOL SWITCH**
- DISPLAY/HIDE KNEEBOARD ICON 82.
- NOT IN USE 83.
 - 84. PROPELLANT MANIFOLD PRESSURE GAUGE
 - 85. FUEL LINE-LOW CAUTION LIGHT 86. H₂O₂ TANK AND ENGINE CONTROL LINE
- PRESSURE GAUGE
- ENGINE RESET BUTTON 87
- ENGINE MASTER SWITCH 88.
- 89. DISPLAY/HIDE SERVICE PANEL ICON

Xtreme Prototypes X-15-2/3 for Flight Simulator, Version 1.0 – Utility Flight Manual

70. CLOCK

- 19. Mixing chamber temperature gauge [66, fig. 4-1, 4-2, 4-3; 61, fig. 4-4] Check.
- 20. APU bearing temperature gauge [63, fig. 4-1, 4-2, 4-3; 62, fig. 4-4] Check.
- 21. Cabin source pressure gauge [61, fig. 4-1, 4-2, 4-3; 59, fig. 4-4] Check.
- 22. Cabin pressure altimeter [59, fig. 4-1, 4-2, 4-3; 60, fig. 4-4] Check.

Center pedestal (stability augmentation system panel, if available, and research instrumentation panel):

1. Click the **DISPLAY/HIDE CENTER PEDESTAL** icon [71, fig 4-1, 4-2, 4-3, 4-4] at the center of the main panel to display the center pedestal (or select **CENTER PEDESTAL** from the "Instrument Panel" menu, under the "View" menu of the main Flight Simulator window menu bar).

STABILITY

00

0 0

2

00

COCKPIT

- 2. Undock and reposition the panel if necessary.
- 3. Pitch function switch [32, fig. 4-11] – **STDBY.**
- 4. Roll function switch [31, fig. 4-11] – STDBY.
- 5. SAS test switch [7, fig. 4-11] – Check OFF (CENTER).
- 6. Yar function switch [6, fig. 4-11] - STDBY.
- 7. Yaw function switch [5, fig. 4-11] STDBY.
- 8. SAS caution (amber) lights (four) [1-4, fig. 4-11] Check **ON**.
- SAS gain selector knobs [8, 29-30, fig. 4-11] Set to LO.
- Ball nose test button (if ball nose is installed) [25, fig. 4-11; 6, fig. 4-12] Check (normal).
- 11. Engine oscillograph record switch [11, fig. 4-11] -

OFF.

- 12. Ram-air lever [28, fig. 4-11; 15, fig. 4-12] OPEN.
- 13. Radar beacon switch [22, fig. 4-11; 13, fig. 4-12] OFF.
- 14. Instrumentation master power switch [10, fig. 4-11; 14, fig. 4-12] – OFF.
- Stable platform instrument switch [21, fig. 4-11; 9, fig. 4-12] - ON.
- Ball nose power switch (if ball nose is installed) [9, fig. 4-11; 5, fig. 4-12] ON.
- 17. Engine vibration recorder switch [18, fig. 4-11] OFF.
- Cockpit ram-air knob [17, fig. 4-11; 10, fig. 4-12] –
 OFF (in).
- 19. DC voltmeter selector switch [20, fig. 4-11; 12, fig. 4-12] – **BUS.**
- 20. DC voltmeter [19, fig. 4-11; 11, fig. 4-12] Check (28-volt bus or 24-volt strain gauge or battery).

Center pedestal or main panel (MH-96 system control panel on X-15-3):

- 1. Pitch, roll and yaw damper switches [1-3, fig. 4-14] OFF (DOWN).
- 2. Pitch, roll and yaw gain selector switches [8-10, fig. 4-14] – FIXED GAIN (DOWN).

- 3. CSS switch [4, fig. 4-14] OFF (DOWN).
- 4. Auto-trim selector switch [5, fig. 4-14] NORMAL (DOWN).
- 5. Reaction controls switch [6, fig. 4-14] OFF (DOWN).
- 6. Roll trim knob [7, fig. 4-14] CENTER.

Xtreme Prototypes X-15-2/3 for Flight Simulator, Version 1.0 – Utility Flight Manual 5-12

PRELAUNCH

BEFORE COUNTDOWN

Before countdown, complete final cockpit check as follows:

- 1. Ram-air lever [28, fig. 4-11; 15, fig. 4-12] – Check CLOSED.
- 2. Ventral arming switch [3, fig. 4-7] – Check ARM.

APUs:

- APU switch No. 1 [35, fig. 4-1, 4-2, 4-3; 67, fig. 4-4] ON. As APU No. 1 comes up to speed, hydraulic pressure will increase and then stabilize at 3000 to 3500 psi.
- No. 1 generator switch [45, fig. 4-1, 4-2, 4-3; 44, fig. 4-4] – Move No. 1 generator switch momentarily to RESET, then to ON.
- 3. No. 1 generator out (amber) light [41, fig. 4-1, 4-2, 4-3; 42, fig. 4-4] – Check **OFF.**
- APU switch No. 2 [54, fig. 4-1, 4-2, 4-3, 4-4] ON. As APU No. 2 comes up to speed, hydraulic pressure will increase and then stabilize at 3000 to 3500 psi.
- 5. No. 2 generator switch [46, fig. 4-1, 4-2, 4-3; 49, fig. 4-4] Move No. 2 generator switch momentarily to RESET, then to ON.

6. No. 2 generator out (amber) light [48, fig. 4-1, 4-2, 4-3; 47, fig 4-4] – Check OFF.

When the APUs are operating, steam should be observed coming out of the APU exhaust pipes.

- Stable platform power switch [57, fig. 4-1, 4-2, 4-3; 58, fig. 4-4; 9, fig. 4-7] INT (up position).
- 8. Service panel external power switch [24, fig. 4-5] **OFF.**
- 9. Service panel external power (yellow) light [25, fig. 4-5] – Check OFF.

- 10. No. 1 generator voltmeter [43, fig. 4-1, 4-2, 4-3; 45, fig. 4-4] Check (200 volts, internal).
- 11. No. 2 generator voltmeter [50, fig. 4-1, 4-2, 4-3; 45, fig. 4-4] Check (200 volts, internal).
- Hydraulic pressure gauge [60, fig 4-1, 4-2, 4-3; 36, fig. 4-4] Check (both pointers, 3000 to 3500 psi).
- 13. DC voltmeter selector switch [20, fig. 4-11; 12, fig. 4-12] – Check **BUS**.
- 14. DC voltmeter [19, fig. 4-11; 11, fig. 4-12] Check (28 volts).

Xtreme Prototypes X-15-2/3 for Flight Simulator, Version 1.0 – Utility Flight Manual 5-16

NOTE: The prime can be stopped at any time by placing the engine prime switch at **STOP PRIME**. This closes the liquid oxygen and NH_3 tank main propellant valves and the H_2O_2 safety valve.

- 13. Chamber and stage 2 igniter pressure gauge [76, fig. 4-1, 4-2, 4-3; 28, fig 4-4] Check (both pointers, 0 psi).
- 14. Liquid oxygen bearing temperature gauge [72, fig. 4-1, 4-2, 4-3] – Check.
- H₂O₂ source and purge pressure gauge [4, fig. 4-1, 4-2, 4-3, 4-4] Check (pointers 1 and 2, 3000 to 3900 psi).
- 16. H_2O_2 tank and engine control line pressure gauge [86, fig. 4-1, 4-2, 4-3; 79, fig. 4-4] Check (both pointers, 575 to 615 psi).
- 17. Propellant pump inlet pressure gauge [8, fig. 4-2, 4-3; 74, fig. 4-4] Check (both pointers, 45 to 65 psi).
- Turbopump idle button
 [77, fig. 4-1, 4-2, 4-3; 78, fig. 4-4] – Push once. This will start the engine turbopump and hot exhaust gas will be emitted at the back of the aircraft.

Propellant manifold pressure gauge [84, fig. 4-1, 4-2, 4-3; 72, fig. 4-4] – Check (both pointers, 300 to 450 psi).

Turbopump operation.

The manifold pressure will increase during engine operation and will vary according to the movement of the throttle. Make sure that the throttle on your joystick is set to its minimum position:

- 20. Move the throttle <u>on your joystick</u> to its maximum (forward) position. Then pull the throttle back to its minimum position.
- Telemeter and radar switches [13, 22, fig. 4-11; 16, 13, fig. 4-12] – Recheck.
- 22. Telemeter commutator motor switch [16, fig. 4-11; 17, fig. 4-12] Check ON.
- 23. Communications Check.

<u>In the real world</u>: Check communication with ground station, carrier pilot, and chase pilots.

24. Ready-to-Launch switch [3, fig. 4-9; 82, fig. 4-2, 4-3; 76, fig. 4-4] –
ON.

<u>In the real world</u>: Verbally check with carrier pilot and launch operator that the Ready-to-Launch light is on.

25. Ready-to-Launch (green) light on Service Panel [11, fig. 4-5] – Check ON.

X-15 READY TO LAUNCH

Operation of igniter idle is limited to 30 seconds. When 7 seconds remain of the normal igniter idle phase, the no-

drop or 23-second (amber) caution light [22, fig. 4-1, 4-2, 4-3; 21, fig. 4-4] will come **ON**. With the no-drop or 23-second (amber) caution light on, the pilot must terminate the igniter idle phase – by moving the engine prime switch to **STOP PRIME** – or continue on to the launch phase.

<u>In the real world</u>: The igniter idle phase must be terminated immediately if the idle-end

(amber) caution light [21, fig. 4-1, 4-2, 4-3; 20, fig. 4-3]

comes on, as damage to the engine chamber will occur because of insufficient cooling.

26. Igniter idle switch [74, fig. 4-1, 4-2, 4-3; 75, fig. 4-4] – IGNITER.

When the igniter idle switch is placed to **IGNITER**, the ignition-ready light [23, fig. 4-1, 4-2, 4-3; 22, fig. 4-4] goes out for 2 seconds while the engine is purged with helium and the igniter spark plugs are energized. When this phase is completed, the ignition-ready light comes on again.

27. Chamber and stage 2 igniter pressure gauge [76, fig. 4-1, 4-2, 4-3; 28, fig 4-4] – Check (small pointer,

150 psi in about 5 seconds, when stage 2 is ignited). Flames should be observed inside the rocket engine bell (nozzle) as stage 1 and stage 2 are ignited.

The main chamber and

stage 2 igniter pressure will increase during engine operation and will vary according to the movement of the throttle.

Ready to launch! <u>In the real world</u>: Countdown by carrier pilot.

Igniter idle phase.

BALLISTIC CONTROL AND REACTION AUGMENTA-TION SYSTEM OPERATION

Since many missions will involve flight at altitudes where control surfaces are ineffective and where ballistic control system operation will be required to maintain airplane attitude, the ballistic control system should be turned on before launch. The reaction augmentation system (RAS)* should be turned on as soon as possible after engine burnout. To turn on the ballistic control and reaction augmentation systems, proceed as follows:

- 1. No. 1 ballistic control switch [65, fig. 4-1, 4-2, 4-3; 40, fig. 4-4] **ON.**
- No. 2 ballistic control switch [62, fig. 4-1, 4-2, 4-3; 50, fig. 4-43] – ON.

- 3. RAS function switches (X-15-2 aircraft only*) [1-3, fig. 4-13] ENGAGE.
- 4. RAS-out (amber) light (X-15-2 aircraft only*) [42, fig. 4-2] OUT (OFF).

*: There is no RAS installed in the X-15-2 equipped with the NACA vane-type boom nose. On the X-15-2 equipped with the NACA/Nortronics ball nose, the RAS panel is available as a separate panel, under the "Views/ Instrument Panel" menu of

the main FS window.

 MH-96 system reaction controls switch (X-15-3 aircraft only) [6, fig. 4-14] – ON (UP). Check that the MH-96 system indicator (amber) lights [90, fig. 4-3; 85, fig. 4-4] are on.

Xtreme Prototypes X-15-2/3 for Flight Simulator, Version 1.0 – Utility Flight Manual 5-21

- Propellant (helium) source pressure gauge [12, fig. 4-1, 4-2, 4-3; 13, fig. 4-4] Check (3300 to 3900 psi).
- H₂O₂ source and purge pressure gauge [4, fig. 4-1, 4-2, 4-3, 4-4] Check (both pointers, 3300 to 3900 psi).
- 6. Propellant tank pressure gauge [6, fig. 4-1, 4-2, 4-3; 81, fig. 4-4] – Check ("L" pointer, 45 to 65 psi; "A" pointer, 45 to 65 psi).
- 7. H_2O_2 tank and engine control line pressure gauge [86, fig. 4-1, 4-2, 4-3; 79, fig. 4-4] Check (both pointers, 575 to 615 psi).

X-15-3 in flight.

NORMAL INDICATIONS DURING START

When the thrust chamber or chambers are fired, the following indications will be evident:

- □ Turbine whine;
- Turbine exhaust steam will be seen at the back of the aircraft;
- Liquid oxygen and ammonia will automatically stop bleeding overboard (as observed during prime);
- Liquid oxygen and ammonia manifold pressure will rise to rated values;
- □ Igniters will be operating;
- □ Chamber pressure will rise to a point where the igniters cease firing and chamber pressure will be shown on the indicator gauge;
- □ Airplane propellants will be consumed at a very high rate, as can be observed on the volume gauges [1-3, fig. 4-5] on the X-15 for Flight Simulator ser-

vice panel;

- □ Chamber pressure will reach rated values;
- □ Thrust chamber will emit a great deal of noise;
- □ Flames and exhaust gases (smoke, steam) will be seen at the back of the airplane.

ENGINE THRUST CONTROL

Engine thrust is controlled by movement of the throttle between 50% and 100% thrust. Engine response to throttle movement is very rapid, 50% to 100% in approximately 1.5 seconds.

Remember that combustion in the main thrust chamber of the XLR-99

engine on the X-15 for Flight Simulator will occur almost instantaneously when the throttle lever [1, fig. 4-9] is moved from OFF to START 50%.

NORMAL OPERATING CONDITIONS

The following conditions accompany normal rocket engine operation (see appendix 2 for more details):

XLR-99 engine:

- 1. Propellant source pressure gauge [12, fig. 4-1, 4-2, 4-3; 13, fig. 4-4] **3200-3800 psi.**
- H₂O₂ source and purge pressure gauge [4, fig. 4-1, 4-2, 4-3, 4-4] 3000 psi, gradually decreasing (both pointers).
- Propellant tank pressure gauge [6, fig. 4-1, 4-2, 4-3; 81, fig. 4-4] - 45 to 53 psi (both pointers).
- 4. Propellant pump inlet pressure gauge [8, fig. 4-2, 4-3; 74, fig. 4-4] – "L" pointer, 40 to 70 psi; "A" pointer, 40 to 55 psi.
- APU H₂O₂ tank pressure gauge [64, fig. 4-1, 4-2, 4-3; 66, fig. 4-4] - 550 to 610 psi (both pointers).
- Cabin helium source pressure gauge [61, fig. 4-1, 4-2, 4-3; 59, fig. 4-4] 1000 to 3400 psi.
- Hydraulic temperature gauges [58, 69, fig. 4-1, 4-2, 4-3] 0° C to 150° C.

opened, closed and adjusted using the **speed brake handle** on the throttle and speed brake side panel).

2. **Pull the joystick SMOOTHLY** to perform a 5-G to 7-G pullout to level flight at about 70,000 to 60,000 feet, after reentry (see fig. 5-1 on page 5-22).

X-15-3 during her descent and about to perform a 5G pullout to level flight at about 65,000 feet.

NOTE: The speed brakes on the X-15 aircraft were not designed for use as a low-speed drag device. Their design function was to provide the necessary drag conditions for control of the airplane at supersonic speeds and relatively high altitudes.

*CAUTION: Remember that the X-15 possesses a very low lift-drag ratio. After the engine burned out, the aircraft would come down fast and steep. Because of the high rate of descent and the reduced stability at low Mach numbers, the speed brakes are not to be used at full deflection below Mach 1.5.

FUEL JETTISON

While approaching the landing site, the remaining propellants must be jettisoned from the X-15 to minimize fire or explosion hazard upon landing and to lower the weight of the aircraft.

To jettison the remaining propellants from the X-15 airplane before landing or after an aborted launch, proceed as follows:

- 1. Source pressure [12, fig. 4-1, 4-2, 4-3; 13, fig. 4-4] Check.
- 2. Vent, pressurize, and jettison control lever [3, fig. 4-

10] – **JETTISON.** Fuel jettison will be conducted concurrently on all three systems (liquid oxygen, ammonia, and hydrogen peroxide).

3. Jettison stop switches [4-6, fig. 4-6] – **JETT.**

In the spot plane exterior view, check for vapor emitting from the jettison ports, at the back of the X-15 aircraft. Propellant tank volume gauges [1-3, fig. 4-5], on the X-15 for Flight Simulator service panel, can also give a clear indication of the fuel being jettisoned.

<u>In the real world</u>: Have chase pilots verify that fuel is jettisoning.

Before landing, the remaining propellants are dumped overboard through the jettison ports on the X-15-3 for Flight Simulator.

 Vent, pressurize, and jettison control lever [3, fig. 4-10] – VENT. After propellants have been jettisoned, move control lever to VENT.

NOTE: The liquid oxygen and ammonia jettison ports are the long tubes protruding at the back of the airplane's side fairings (each side of the engine compartment). The hydrogen peroxide jettison port is located inside the lower speed brake compartment (right side). Because of some limitations of the FS2004 platform, there is no special effect associated with the APU H_2O_2 jettison.

BEFORE LANDING

X-15-3 approaching Edwards Air Force Base.

1. Check all controls and instruments for landing.

See figure 5-2 on page 5-29 for the recommended landing pattern and procedures.

In the real world: Before landing and in no case above 17,000 feet, move the vent, pressurize, and jettison control lever [3, fig. 4-10] to PRESSURIZE, to prevent sand and dust from entering the airplane propellant system.

When the altitude is under 17,000 feet, proceed as follows:

1. Vent, pressurize, and jettison control lever [3, fig. 4-10] – **PRESSURIZE.**

LANDING

To provide ground clearance for the landing gear, the lower ventral (rudder) must be jettisoned before landing.

NOTE: Under normal flight conditions, the ventral rudder should not be jettisoned except during landing approach. When the altimeter [19, fig. 4-1; 26, fig 4-2; 25, fig. 4-3] indicates 5000 feet, proceed as follows:

- 1. Ventral arming switch [3, fig. 4-7] – Check ARM.
- Ventral jettison button [2, fig. 4-6] – Push (once).

<u>In the real world</u>: The ventral should be jettisoned at an altitude of about 5000 feet and at a minimum of 1500 feet above the ground.

Pushing the ventral jettison button actually fires explosive bolts to release the ventral. Note that the ventral is also jettisoned automatically when the landing gear and skids are deployed.

The ventral rudder is jettisoned before landing to make room for the rear landing skids. In the real world, a parachute will prevent the rudder from being damaged upon landing on the ground. The rudder would be recovered and reused. (X-15-1 shown here)

To extend the flaps, turn the wing flap switch [1, fig. 4-10] on the left white console to **DWN** or use the **"F8"** key on your keyboard (or the appropriate button on your joystick).

To lower the landing gear, click the landing gear handle [9, fig. 4-1, 4-2, 4-3, 4-4; 1, fig. 4-6] on the left side panel or use the "G" key on your keyboard.

Figure 5-2

XLR-99 ENGINE (LIGHT BLUE-GRAY PANEL, TYPICAL)

QUICK-START PROCEDURES

B 1 8 UNLIMITED FUEL NORTH AMERICAN X-15 SERVICE PANEL X-15 READY TO LAUNCH OFF AIRPLANE PROPELLANTS APU 6 9 SOURCE TANK CABIN SOURCE TANK PANE ON HYDROGEN LIQUID NITROGEN LIQUID OXYGEN HYDROGEN PEROXIDE AMMONIA 1 1 7 PONE 0 0 0 0 0 0 0 0 0

Xtreme Prototypes X-15-2/3 for Flight Simulator, Version 1.0 – Utility Flight Manual A1-5

Appendix 2: INSTRUMENT READINGS

INSTRUMENT READINGS AFTER SERVICING

The following conditions should be observed after servicing the X-15:

Service panel:

- 1. Liquid oxygen tank volume gauge [1, fig. 4-5] 1017 gallons.
- 2. Ammonia tank volume gauge [2, fig. 4-5] 1445 gallons.
- 3. Turbopump hydrogen peroxide (H_2O_2) tank volume gauge [3, fig. 4-5] **78 gallons.**
- 4. Propellant source (helium) tank pressure gauge [4, fig. 4-5] **3200-3800 psi.**
- 5. Engine and propellant control source (helium) tank pressure gauge [5, fig. 4-5] **3200-3800 psi.**
- 6. Engine purge and emergency (helium) tanks pressure gauge [7, fig. 4-5] – **3200-3800 psi, both pointers.**
- APU source (helium) tanks pressure gauge [9, fig. 4-5] - 3200-3800 psi, both pointers.
- 8. APU H_2O_2 tanks volume gauge [10, fig. 4-5] **60-75** gallons, both pointers.

- 9. Cabin helium tank pressure gauge [12, fig. 4-5] 3200-3800 psi.
- 10. Liquid N₂ tank volume gauge [13, fig. 4-5] **25-30** gallons.

Main panel (XLR-99 engine):

- 1. Propellant source pressure gauge [12, fig. 4-1, 4-2, 4-3; 13, fig. 4-4] **3200-3800 psi.**
- H₂O₂ source and purge pressure gauge [4, fig. 4-1, 4-2, 4-3, 4-4] **3200-3800 psi, both pointers.**
- 3. APU source pressure gauge [67, fig. 4-1, 4-2, 4-3; 65, fig. 4-4] **3200-3800 psi, both pointers.**
- 4. Cabin helium source pressure gauge [61, fig. 4-1, 4-2, 4-3; 59, fig. 4-4] **1000 to 3400 psi.**
- 5. AC voltmeters [43, 50, fig. 4-1, 4-2, 4-3; 45, fig. 4-4] - **200 volts (external power).**
- 6. H₂O₂ tank and engine control pressure gauge [86, fig. 4-1, 4-2, 4-3; 79, fig. 4-4] "T" pointer, 0 psi;
 "C" pointer, 575-600 psi.

INSTRUMENT READINGS AFTER PROPELLANT SYSTEM PRESSURIZATION

(APUs operating)

The following conditions should be observed after propellant tanks have been pressurized and the APUs operating, but <u>before</u> the engine is ignited:

Service panel:

- Liquid oxygen tank volume gauge [1, fig. 4-5] Approx. 1017 gallons.
- Ammonia tank volume gauge [2, fig. 4-5] Approx. 1445 gallons.
- 3. Turbopump hydrogen peroxide (H₂O₂) tank volume gauge [3, fig. 4-5] **Approx. 78 gallons.**

Xtreme Prototypes X-15-2/3 for Flight Simulator, Version 1.0 – Utility Flight Manual (English). Copyright © 2007 by Xtreme Prototypes, Inc. The software and the present manual are protected by international copyright laws. Please do not make unauthorized copies of the software and/or its related components and documentation, including the present user manual. No part of this document may be reproduced or redistributed in any form or by any means without the written permission of the publisher. All images in this document are actual screenshots of the Xtreme Prototypes X-15-1, X-15-2/3 and X-15A-2 add-on rocket aircraft for Flight Simulator, taken in the Microsoft[®] Flight Simulator 2004 and Flight Simulator X game environments, except where otherwise noted. Microsoft, Microsoft Flight Simulator, Windows and DirectX are either registered trademarks or trademarks of Microsoft Corporation. Other company or product names mentioned herein may be trademarks or registered trademarks of their respective owners. Software features and manual contents are subject to change without notice.

Portions of this manual have been inspired or adapted from the original real-world X-15 utility flight manuals published during the 1950s and 1960s by the U.S. Air Force and North American Aviation. NASA and AFFTC photos have been used in some sections for comparison and illustration purposes only and are the property of their respective owners as credited. Xtreme Prototypes is not affiliated with NASA, North American Aviation (Boeing), the U.S. Air Force, or any other company, entity or government organization related to the X-15 research program. This product is neither sponsored nor endorsed by NASA.

www.xtremeprototypes.com

Xtreme Prototypes, Inc. P.O. Box 64, Station Place du Parc Montreal (QC), CANADA H2X 4A3 Produced with the financial participation of

Administrator of The Canada New Media Fund funded by the Department of Canadian Heritage

